Difference between revisions of "Алгебра"

С Сибирска Википеддя
Айдать на коробушку Айдать на сыскальник
*>Incubator import
*>Timichal
m (Robot: Automated text replacement (-\[\[(C|c)ategory:( |)(S|s)iberian\]\] +))
Line 48: Line 48:
  
 
В деяннях первой задачой алгебры бывша сдумаванне [[Test-wp/chal/алгебришно улогненньо|алгебришных улогненньов]]. С самодосельных времьов знаемо сдуманне уровненньов 2-ой степени. В 16 ст. [[Test-wp/chal/Дж.Кардано|Дж.Кардано]] и [[Test-wp/chal/Л.Феррари|Л.Феррари]] изыскавшы алгебриски сдуманни уровненньов 3-ой и 4-ой степеней. И токо в зачале 19 ст. [[Test-wp/chal/Н.Абель|Н.Абель]] и [[Test-wp/chal/Э.Галуа|Э.Галуа]] избатлили, чо уровненни степени боле 4-ой в вобчом лучае незя сдумать [[Test-wp/chal/радикал|радикалами]].  
 
В деяннях первой задачой алгебры бывша сдумаванне [[Test-wp/chal/алгебришно улогненньо|алгебришных улогненньов]]. С самодосельных времьов знаемо сдуманне уровненньов 2-ой степени. В 16 ст. [[Test-wp/chal/Дж.Кардано|Дж.Кардано]] и [[Test-wp/chal/Л.Феррари|Л.Феррари]] изыскавшы алгебриски сдуманни уровненньов 3-ой и 4-ой степеней. И токо в зачале 19 ст. [[Test-wp/chal/Н.Абель|Н.Абель]] и [[Test-wp/chal/Э.Галуа|Э.Галуа]] избатлили, чо уровненни степени боле 4-ой в вобчом лучае незя сдумать [[Test-wp/chal/радикал|радикалами]].  
[[Category:Siberian]][[Category:Математика]][[Category:Алгебра]]
+
[[Category:Математика]][[Category:Алгебра]]

Revision as of 17:47, 5 Грязника 2006

Головна сторонка

Алгебра

1.) В школьном врубанне – все не земемерришны постати математики.


2.) (Чортова алгебра) Над пайомвьюха в которой пределившы удродненне первиков на первики пая-то с такими свойсвами:

(a+b)α= aα+bα

a•1=a

(ab)α=(aα)b=a(bα)

де 1, α – первики пая-то, a, b, aα, bα – первики вьюхи-той.


3.) Постать математики котора вывучат свойсва алгебришных лечерезков на аравах безпетательно в ихной природе.

Наприклад: ведома формула (a+b)² =a² +2ab+b². Ейно останцованне: (a+b)² =(a+b)(a+b)= (a+b)a+(a+b)b=(a² +ba)(ab+b²)=a² +(ba+ab)+b² =a² +2ab+b². По изыскання-тово корыстоваются конами дистрибутвноси, ассоццативноси и коммутативноси. Чо за оббекты ховаются символами a и b – безрозно; казачно, кабы вони належыли араве, в которой пределена пара алгебришных лучерезок, которы условно кличутся склассеннем и удродненнем, с вышескликанными конами.

Свойсва лучерезок над розными оббектами новойраз пригодаются одинаковы. Фиксуя обчие свойсва зя присти к врубанню аравов с алгебриской байгулой, али универсальных алгебров: стаечеков, вьюхов, пайов и др.

Развиваются також роздуваны, которы вывучат короги универсальных алгебров: топологишна алгебра, теворря стаечков Ли.

На пределах алгебры и тополигги распроживша гомологишна алгебра; алгебра и математишново мантыка - теворря алгебришных систем.

Нарамнях подошемным занченнем мнутрях математики, алгебра имат кляшшо примьотно значенне в природознайсве, управузорочче, математишном домошынознайсве и др.

Деянски найрурал

По зачалу алгебра развивалась с ближной вязкой с числознайсвом.

Выкомор на алгебриско врубанне числознайских задачов есь ужо в досельноегипетском папирусе Ахмеса (кол. 2000 до н.э.).

Как особну постать математики алгебру зя раззырьовать напосля трудов арабскава математика аль-Хорезми (9 ст.). Само слово «алгебра» деятся от «аль-джебра» – зачала одново врання аль-Хорезми.

Челба символов нонешньой алгебры полноссю роспроживша к серьодке 17 ст.

Ф. Виетт первой писавшой задачи в вобчом позыре (с поммогой рьозов).

Прильно к зачалу 18 ст., алгебра распорожиша в тяперешньом школьном оббьоме.

Кляшшом сбывишшом алгебры 18 ст. бывшо роспроженне курса алгебры Л. Эйлера.

Алгебра 17-18 ст. бывша в перву череду алгеброй дородночленов.

В деяннях первой задачой алгебры бывша сдумаванне алгебришных улогненньов. С самодосельных времьов знаемо сдуманне уровненньов 2-ой степени. В 16 ст. Дж.Кардано и Л.Феррари изыскавшы алгебриски сдуманни уровненньов 3-ой и 4-ой степеней. И токо в зачале 19 ст. Н.Абель и Э.Галуа избатлили, чо уровненни степени боле 4-ой в вобчом лучае незя сдумать радикалами.